
LLNL-CONF-409406

Extending Automatic Parallelization to
Optimize High-Level Abstractions for
Multicore

C. Liao, D. J. Quinlan, J. J. Willcock, T. Panas

December 15, 2008

International Workshop on OpenMP
Dresden, Germany
June 3, 2009 through June 5, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Extending Automatic Parallelization to Optimize
High-Level Abstractions for Multicore ?

Chunhua Liao, Daniel J. Quinlan, Jeremiah J. Willcock and Thomas Panas

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{liao6,quinlan1,willcock2,panas2}@llnl.gov

Abstract. Automatic introduction of OpenMP for sequential applica-
tions has attracted significant attention recently because of the prolif-
eration of multicore processors and the simplicity of using OpenMP to
express parallelism for shared-memory systems. However, most previous
research has only focused on C and Fortran applications operating on
primitive data types. C++ applications using high-level abstractions,
such as STL containers and complex user-defined types, are largely ig-
nored due to the lack of research compilers that are readily able to recog-
nize high-level object-oriented abstractions and leverage their associated
semantics. In this paper, we automatically parallelize C++ applications
using ROSE, a multiple-language source-to-source compiler infrastruc-
ture which preserves the high-level abstractions and gives us access to
their semantics. Several representative parallelization candidate kernels
are used to explore semantic-aware parallelization strategies for high-
level abstractions, combined with extended compiler analyses. Those
kernels include an array-base computation loop, a loop with task-level
parallelism, and a domain-specific tree traversal. Our work extends the
applicability of automatic parallelization to modern applications using
high-level abstractions and exposes more opportunities to take advantage
of multicore processors.

1 Introduction

Today’s multicore processors have been forcing application developers to par-
allelize legacy sequential codes and/or write new parallel applications if they
want to take advantage of shared-memory parallelism supported by hardware.
However, parallel programming is never an easy task for users, given the stun-
ning work to deal with extra issues in parallel computing, such as dependencies,
synchronization, load balancing, and race conditions. Therefore, parallelizing

? This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We
thank Dr. Qing Yi for her dependence analysis implementation in ROSE, which we
believe is based on Professor John Mellor-Crummey’s dependence analysis in the
Fortran D Compiler.

compilers and tools are playing increasingly important roles in allowing the full
utilization of new computer systems and enhancing the productivity of users.
OpenMP is a simple and portable parallel programming model that extends
existing programming languages like C/C++ and Fortran 77/90 to include ad-
ditional parallel semantics. The extensions OpenMP provide contain compiler
directives, user level runtime routines and environment variables. Programmers
can use OpenMP to express parallelization opportunities and strategies for appli-
cations. Moreover, the simple API provided by OpenMP has attracted paralleliz-
ing compilers and tools to use OpenMP as a target for interactive or automatic
parallelization. Although numerous parallelizing compilers [1, 2] and tools [3]
have been presented during the past decades, most of them focus only on C
and/or Fortran applications operating on primitive data types. On the other
hand, object-oriented languages, especially C++, are widely used to develop
scientific computing applications. Those applications are often written with var-
ious standard and/or user-defined high-level abstractions, such as those in the
C++ Standard Template Library (STL), now part of the C++ standard. While
high-level abstractions successfully hide their implementation details and are
useful to users for this purpose, they significantly impede static code analy-
ses applied to their complex implementation. Typically, significant information
about the abstractions is lost during the compiler’s lowering to a simple interme-
diate representation (IR). Thus, compilers are often forced to make conservative
assumptions for applications using such abstractions and are not able to apply
many optimizations, including automatic parallelization.

In this paper, we use a source-to-source compiler infrastructure, ROSE [4], to
explore compiler techniques to recognize high-level abstractions and to exploit
their semantics for automatic parallelization. Specifically, our work addresses
the concerns of parallelism for three target audiences: 1) users with legacy code
(C/C++) using standard abstractions (STL, etc.), 2) users and library writ-
ers with domain-specific abstractions that have semantic properties that match
those of the ones we make available, 3) library developers who are developing
domain-specific abstractions for users and leveraging the semantics using their
own semantic specifications (ones that we don’t define). Our work addresses the
essential requirement that modern compilers be fundamentally extensible in a
way that simplifies how domain-specific abstractions can be optimized.

2 The ROSE Compiler Infrastructure

ROSE is an open source compiler infrastructure to build source-to-source pro-
gram transformation and analysis tools for large-scale C/C++ and Fortran ap-
plications. Since it preserves the representation of high-level abstractions, no
required information to recognize such abstractions is lost and the associated se-
mantics can be reliably inferred. ROSE allows even non-expert users to exploit
compiler techniques to address the analysis and transformation of abstractions.

Fig. 1 illustrates a typical source-to-source translator built using ROSE. The
Edison Design Group (EDG) front-end [5] is used to parse C and C++ applica-
tions. EDG source files and its IR are protected under commercial or research

licenses, but may be distributed freely in binary form. Language support for
Fortran 2003 (and earlier versions) is based on the open source Open Fortran
Parser (OFP) [6] developed at Los Alamos National Laboratory. Using both
EDG and OFP, ROSE presents a common object-oriented, open-source IR for
C/C++ and Fortran. The ROSE IR includes an abstract syntax tree (AST),
symbol tables, a control flow graph, etc. and is based loosely on the Sage++
IR design [7]. Generic and custom program analysis and transformation can be
built on top of the ROSE IR. The ROSE unparser generates source code in the
original source language from the transformed AST. Finally, a vendor compiler
is optionally called to continue the compilation of the generated (transformed)
source code, generating a final executable.

Vendor’s Compiler

EDG Front-end / Open Fortran Parser

ROSE IR

Program Transformation

ROSE Unparser

Transformed C/C++/Fortran Code

Program Analysis

A
 T

ra
ns

la
to

r B
ui

lt
U

si
ng

 R
O

S
E

Executable

Source Code

Fig. 1. A source-to-source translator built using ROSE

The ROSE AST, together with its corresponding symbol tables, fully sup-
ports type resolution, semantic analysis, and overloaded function resolution. All
information in the application source code is preserved in the AST, including
C preprocessor control structure, source comments, source position information,
token stream (including whitespace), and C++ template information. The ROSE
AST also has a rich set of interfaces for building source-to-source translators.
These interfaces support efficient AST traversals, AST node queries, AST con-
struction, copying, insertion, removal, and symbol table lookups.

3 High-Level Abstractions and Parallelization

General purpose languages typically permit the construction of abstractions;
represented by functions, data structures, etc. These permit high-level represen-
tations of typically user-defined concepts. C++, as an object-oriented language,
supports more complex abstractions and encourages the use of classes, member
functions, templates, etc.

Knowledge of the semantics of the abstractions can be a short-cut for pro-
gram analysis based on the implementation of an abstraction. As an example,
the knowledge that STL vectors are contiguous in memory is critical to nu-
merous optimization opportunities, but it might be impossible to obtain from

an analysis of a specific STL implementation because of the complexity of its
internal pointer handling. By exploiting well defined semantics of high-level ab-
stractions, compilers can significantly enhance the applicability and accuracy of
existing analyses and optimizations. Such work also serves to encourage libraries
to define abstractions with well defined semantics. For instance, traditional par-
allelization algorithms designed for primitive data types can be extended to
handle applications using high-level abstractions if the applications demonstrate
similar semantic properties. The semantics of abstractions often directly indicate
the side effects of function calls and such knowledge can significantly benefit par-
allelization which is often disabled because the inability to accurately summarize
read and write accesses hidden behind call sites.

In the following subsections, we examine several typical candidates and ex-
plore parallelization strategies for applications using high-level abstractions.

3.1 An Array-Based Computation Loop

Loops operating on fixed-sized arrays are probably the most popular and rep-
resentative examples for automatic parallelization using OpenMP. Typically, an
array-based computation loop parallelizable by using omp parallel for has the fol-
lowing properties:

1. The loop has a canonical form (for (init; test; incr) block) which satisfies the
requirements as defined by the OpenMP specification.

2. The loop operates on arrays using contiguous memory locations for a set of
elements of the same type.

3. The elements of arrays do not overlap in memory or alias each other.
4. Random element accesses with a constant cost can be achieved by calculating

offsets from an array base using subscripts.
5. The operations on the arrays do not rearrange the memory layout of elements

and invalidate their accesses using subscripts across different iterations.
6. There are no loop carried data dependencies for array element accesses.

Conventional parallelization algorithms rely on a set of transformations and
analyses in order to judge the safety of parallelization. For example, loop nor-
malization is conducted to produce a canonical form, if possible. Alias analysis
is used to tell if there are aliased elements. A set of data dependence tests
based on array subscripts are used to determine if different loop iterations are
independent. Automatic parallelization can be extended to handle high-level ab-
stractions by leveraging their semantics and applying the conventional analyses
and transformations. We take the following STL vector computation loop as an
example to explore a viable parallelization method. The method is generic so
that it can be applied to other high-level abstractions with similar semantics,
including the STL deque or user-defined types.

1 std::vector <int> v1(100);
2 for (int i=0; i<100; i++)
3 v1[i] = v1[i] + i;

The STL vector has many semantics (e.g. iterator invalidation rules) which
can be taken advantage of by automatic parallelization. As a sequential con-
tainer with contiguous storage for its elements, it supports random element ac-
cess via both iterators and member functions (operator[] and at()). Although a
vector can be reallocated or resized during its lifetime, it is quite common to
have computation phases in which the vector participates in computations as
if it was a fixed-sized primitive array. Within these phases, the arguments of
random element access functions can be directly treated as array subscripts and
passed to relevant parallelization analysis, especially array dependence analy-
sis. The elements of the vector have to be verified to be alias-free and non-
overlapping, either by compiler analyses or user annotations. Even for a loop
using random access iterators, an extended loop normalization phase can con-
vert the loop into a canonical form that is friendly to parallelization. For example,
for(vector<T>::iterator i = v.begin(); i!=v.end(); i++) can be transformed to size t n=v.size();

for (size t i=0; i<n; i++). Dereferences of the iterator within the loop body can be
replaced with equivalent element access function calls. In this case, all variable
accesses like (∗i) and i[n] are replaced with v[i](or v.at(i)) and v[i+n](or v.at(i+n))
respectively according to the semantics defined in the language standard.

3.2 A Loop with Task-Level Parallelism

OpenMP 3.0 allows programmers to explicitly create tasks, which enable more
parallelization opportunities, especially for algorithms applying independent tasks
on non-random accessible data sets, or those using pointer chasing, recursion and
so on. It is worthwhile to study how the semantics of high-level abstractions can
facilitate parallelization targeting task level parallelism.

An example using the STL list is shown below as a typical candidate for
parallelization using an omp task directive combined with an omp single within
an omp parallel region:

1 for (std::list<myType>::iterator i=my list.begin();i!=my list.end();i++)
2 process(∗i);

In order to parallelize the loop, a parallelization algorithm has to recognize the
following program properties (a conservative case of parallelizable loops):

1. Whether the container supports random access, thus enabling the use of
omp for; omp task is allowed in either case.

2. The elements in the container do not alias or overlap.
3. At most one element accessed via the loop index variable, we refer it as

the current element, is written within each iteration (no loop-carried output
dependence among the elements).

4. The loop body does not read elements other than the current element if
there is at least one write access to the current element (no loop carried true
dependence or antidependence among the elements).

5. There are no other loop carried dependencies caused by variable references
other than accessing the elements in the container.

A parallelization algorithm can significantly benefit from the known seman-
tics of standard and user-defined high-level abstractions when dealing with a
target mentioned above. It is essential that individual iterations of the loop be
independent, substantial analysis is required to verify this. For instance, STL
lists do not support random access. Knowing the usage of iterators will help
identifying the loop index variable of non-integer types and is critical to rec-
ognize the reference to the current element by iterator dereferencing. Element
accesses using other than dereferencing the index iterator, such as front() and
back() can be conservatively treated as accesses to non-current elements. Many
standard and custom functions have well defined side effects on both function
parameters and/or global variables. Therefore compilers can skip costly side ef-
fect analysis for those functions, such as size() and empty() for STL containers.
Domain-specific knowledge can even be used to ensure the uniqueness of ele-
ments within a container to be processed as an alternative to conventional alias
and pointer analysis. For example, a list of C function definitions returned by a
ROSE AST query function has unique and non-overlapping elements.

3.3 A Domain-Specific Tree Traversal

We discuss a specific example from a static analysis tool, namely Compass [8],
which is a ROSE-based framework for writing static code analysis tools to detect
software defects or bugs. A typical Compass checker’s kernel is given in Fig. 2.
It is a visitor function to detect any error-prone usage of relational comparison,
including <, >, ≤, and ≥, on pointers (MISRA Rule 5-0-18 [9]). A recursive tree
traversal function walks an input code’s AST and invokes the visitor function
on each node. Once a potential defect is found, the AST node is stored for
later display. Most functions (information retrieval functions like get ∗() and type
casting functions like isSg∗()) used in the function body have read-only semantics.

1 void CompassAnalyses::PointerComparison::Traversal::visit(SgNode∗ node){
2 SgBinaryOp∗ bin op = isSgBinaryOp(node);
3 if (bin op){
4 if (isSgGreaterThanOp(node)||isSgGreaterOrEqualOp(node)||
5 isSgLessThanOp(node)||isSgLessOrEqualOp(node)){
6 SgType∗ lhs type = bin op−>get lhs operand()−>get type();
7 SgType∗ rhs type = bin op−>get rhs operand()−>get type();
8 if (isSgPointerType(lhs type)||isSgPointerType(rhs type))
9 output−>addOutput(bin op);

10 } } }

Fig. 2. A Compass checker’s kernel

Even with ideal side effect analysis and alias analysis, a conventional paral-
lelization algorithm will still have trouble in recognizing the kernel as an inde-
pendent task. The reason is that the write access (line 9) to the shared list will
cause an output dependence among different threads, which prevents possible
parallelization. However, the kernel’s semantics imply that the order of the write
accesses does not matter, which make this write access suitable to be protected

using omp critical. Communicating such semantics to compilers is essential to
eliminate the output dependence after adding the synchronization construct.

Another piece of semantic knowledge will enable an even more dramatic
optimization. The AST traversal used by Compass checkers does not care about
the order of nodes being visited. So it is semantically equal to a loop over the
same AST nodes. The AST nodes are stored in memory pools, as in most other
compilers [10]. The memory pools in ROSE are implemented as arrays of each
type of IR node stored consecutively. Converting a recursive tree traversal into
a loop over the memory pools is often beneficial due to better cache locality and
less function call overhead. The loop is also more friendly to most analyses and
optimizations than the original recursive function call; and importantly to this
paper, can be automatically parallelized. In a more aggressive optimization, the
types of IR nodes analyzed by the checker can be identified and only the relevant
memory pools will be searched.

4 A Semantic-Aware Parallelizer

We design a parallelizer using ROSE to automatically parallelize target loops
and functions by introducing either omp for or omp task, and other required di-
rectives and clauses. It is designed to handle both conventional loops operating
on primitive arrays and modern applications using high-level abstractions. The
parallelizer uses the following algorithm:

1. Preparation and Preprocessing
(a) Read a specification file for known abstractions and semantics.
(b) Apply optional custom transformations based on input code semantics,

such as converting tree traversals to loop iterations on memory pools.
(c) Normalize loops, including those using iterators.
(d) Find candidate array computation loops with canonical forms (for omp for)

or loops and functions operating on individual elements (for omp task).
2. For each candidate:

(a) Skip the target if there are function calls without known semantics or
side effects.

(b) Call dependence analysis and liveness analysis.
(c) Classify OpenMP variables (autoscoping), recognize references to the

current element, and find order-independent write accesses.
(d) Eliminate dependencies associated with autoscoped variables, the cur-

rent elements, and the variable updates which are order-independent.
(e) Insert the corresponding OpenMP directives if no dependencies remain.

The key idea of the algorithm is to capture dependencies within a target and
eliminate them later on as much as possible based on various rules. Paralleliza-
tion is safe if there are no remaining dependencies. Similar to other work [2], our
variable classification is largely based on the classic live variable analysis and id-
iom recognition analysis to identify variables that could be classified as private,
firstprivate, lastprivate, and reduction. Semantics of abstractions are used in almost

each step to facilitate the transformations and analyses, including recognizing
function calls as variable references, identifying the current element being ac-
cessed, and ensuring if there are constraints for the ordering of write accesses
to shared variables. We give more details of the parallelizer and its handling of
high-level abstractions in the following subsections.

4.1 Recognizing High-Level Abstractions and Semantics

ROSE uses a high-level AST which permits the high fidelity representation of
both standard and user-defined abstractions in their original source code forms
without loss of precision. As a result, program analyses have access to the details
of high-level abstraction usage typically lost in a lower level IR. The context
of those abstractions can be combined with their known semantics to provide
fundamentally more information than could be known from static analysis alone.

Although semantics of standard types and operations can be directly inte-
grated into ROSE to facilitate parallelization, a versatile interface is still favor-
able to accommodate semantics of user-defined types. As a prototype implemen-
tation, we extend the annotation syntax proposed by [11] to manually prepare
the specification file representing the knowledge of known types and semantics.
A future version of the file will be expressed in C++ syntax. An example spec-
ification file is given below. It contains a list of qualified names for classes or
instantiated class templates with array-like semantics, and their member func-
tions for element access, size query, and other operations preserving the relevant
semantics. We also specify side effects of known functions, uniqueness of returned
data sets, order-independent write accesses, and so on.

1 class std::vector<MyType> {
2 alias none; overlap none; //elements are alias−free and non−overlapping
3 is fixed size array { //semantic−preserving functions as a fixed−size array
4 length(i)={this.size()};
5 element(i)={this.operator[](i); this.at(i);};
6 };
7 };
8 void my processing(SgNode∗ func def) {
9 read{func def}; modify {func def}; //side effects of a function

10 }
11 std::list<SgFunctionDef∗> findCFunctionDefinition(SgNode∗ root){
12 read {root}; modify {result};
13 return unique; //return a unique set
14 }
15 void Compass::OutputObject::addOutput(SgNode∗ node){
16 //order−independent side effects
17 read {node}; modify {Compass::OutputObject::outputList<order independent>};
18 }

4.2 Dependence Analysis

We generate dependence relations for both eligible loop bodies and function
bodies to explore the parallelization opportunities. We compute all dependence
relations between every two statements s1 and s2 within the target loop body or
function body. The foundation of the analysis is the variable reference collection
phase, in which all variable references from both statements are collected and

categorized into read and write variable sets. In addition to traditional scalar
and array references, each member function call returning a C++ reference type
is checked to see if it is semantically equivalent to a subscripted element access of
an array-like object. An internal function, is array(), is used to resolve the type of
the object implementing the member function call and compare it to the list of
known array types as given in the specification file. Consequently, is element access()

is applied to the function call to check for an array element access and obtain
its subscripts. Read and write variable sets of other known functions are also
recognized and the affected variables are collected.

After that, a dependence relation is generated for each pair of references, r1

from s1’s referenced variable set and r2 from s2’s, if at least one of the references
is a write access and both of them refer to the same memory location based on
their qualified variable names or the alias information in the specification file.
For array accesses within canonical loops, a Gaussian elimination algorithm is
used to solve a set of linear integer equations of loop induction variables. The
details of the array dependence analysis can be found in [12].

5 Preliminary Results

As this work is an ongoing project (the current implementation is released with
the ROSE distribution downloadable from our website [4]), we present some
preliminary results in this section. Several sequential kernels in C and C++ were
chosen to test our automatic parallelization algorithm on both primitive types
and high-level abstractions. They include a C version Jacobi iteration converted
from [13] operating on a 500× 500 double precision array, a C++ vector 2-norm
distance calculation (

√∑n
i=1 (xi − yi)2) on 100 million elements, and a Compass

checker (shown in Fig. 2 for MISRA Rule 5-0-18 [9]) applied on a ROSE source
file (Cxx Grammar.C) with approximately 300K lines of code. The generated
OpenMP versions were compiled using our own OpenMP translator, which is a
ROSE-based OpenMP 2.5 implementation targeting the Omni OpenMP runtime
library [14]; thus, we do not have performance results for task parallelism (we are
currently working on an OpenMP 3.0 implementation and we will also use other
OpenMP 3.0 compilers as the backend compiler in the future). GCC 4.1.2 was
used as the backend compiler with optimization disabled; optimization is not
relevant because we are only showing that our algorithm can extract parallelism
from high-level abstractions. We ran the experiments on a Dell Precision T5400
workstation with two sockets, each a 3.16 GHz quad-core Intel Xeon X5460
processor, and 8 GB memory.

Fig. 3 gives speedup of all the three test kernels after domain-specific op-
timization (optional) and parallelization compared to their original sequential
executions. The results proved the efficiency of the semantic-driven optimization
of replacing the tree traversal with a loop iteration for the Compass checker: a
performance improvement of 35% of the one thread execution compared to the
original sequential execution. Our algorithm was also able to capture the par-
allelization opportunities associated with both primitive data types and high-
level abstractions. All tests showed near-linear speedup except for the Compass

checker. The critical section within the checker’s parallel region made a linear
speedup impossible when 7 and 8 threads were used. More dramatic performance
improvements can be obtained if only the relevant memory pools are searched
but this step is not yet automated in our implementation.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of threads

Linear
2-norm
Jacobi

Compass

Fig. 3. Speedup of the three example programs after parallelization

6 Related Work

Numerous research compilers have been developed to support automatic paral-
lelization. We only mention a few of them due to the page limit. For example,
the Vienna Fortran compiler (VFC) [15] is a source-to-source parallelization
system for an optimized version of High Performance Fortran. The Polaris com-
piler [1] is mainly used for improving loop-level automatic parallelization. The
SUIF compiler [16] was designed to be a parallelizing and optimizing compiler
supporting multiple languages. However, to the best of our knowledge current
research parallelizing compilers largely focus on Fortran and/or C applications.
Commercial parallelizing compilers like the Intel C++/Fortran compiler [2] also
use OpenMP internally as a target for automatic parallelization. Our work in
ROSE aims to complement existing compilers by providing a source-to-source,
extensible parallelizing compiler infrastructure targeting modern object-oriented
applications using both standard and user-defined high-level abstractions.

Several papers in the literature present parallelization efforts for C++ Stan-
dard Template Library (STL) or generic libraries. The Parallel Standard Tem-
plate Library (PSTL) [17] uses parallel iterators and provides some parallel
containers and algorithms. The Standard Template Adaptive Parallel Library
(STAPL) [18] is a superset of the C++ STL. It supports both automatic par-
allelization and user specified parallelization policies with several major compo-
nents for containers, algorithms, random access range, data distribution, schedul-
ing and execution. GCC 4.3’s runtime library (libstdc++) provides an experi-
mental parallel mode, which implements an OpenMP version of many C++

standard library algorithms [19]. Kambadur et al. [20] proposes a set of language
extensions to better support C++ iterators and function objects in generic li-
braries. However, all library-based parallelization methods require users to make
sure that their applications are parallelizable. Our work automatically ensures
the safety of parallelization based on semantics of high-level abstractions and
compiler analyses.

Some previous research has explored code analyses and optimizations based
on high-level semantics. STLlint [21] performs static checking for STL usage
based on symbolic execution. Yi and Quinlan [11] developed a set of sophisticated
semantic annotations to enable conventional sequential loop optimizations on
user-defined array classes. Quinlan et al. [22, 23] presented the parallelization
opportunities solely using the high-level semantics of A++/P++ libraries and
user-defined C++ containers without using dependence analysis. This paper
combines both standard and user-defined semantics with compiler analyses to
further broaden the applicable scenarios of automatic parallelization. We also
consider the new OpenMP 3.0 features and domain-specific optimizations.

7 Conclusions and Future Work

In this paper, we have explored the impact of high-level abstractions on auto-
matic parallelization of C++ applications and designed a parallelization algo-
rithm to take advantage of the capability of the ROSE source-to-source com-
piler infrastructure and the known semantics of both standard and user-defined
abstractions. Our work demonstrates that semantic-driven parallelization is a
very feasible and powerful approach to capture more parallelization opportuni-
ties than conventional parallelization methods for multicore architectures. Our
approach can also be seamlessly integrated with conventional analysis-driven
parallelization algorithms as a significant complement or enhancement.

In the future, we will apply our method on large-scale C++ applications
to recognize and classify more semantics which can be critical to parallelization.
We are planning to extend our work to support applications using more complex
and dynamic control flows such as pointer chasing and use more OpenMP con-
struct types. Further work also includes exploring the interaction between the
automatic parallelization and conventional loop transformations and leveraging
semantics for better OpenMP optimizations as well as correctness analyses.

References

1. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel
programming with Polaris. Computer 29(12) (1996) 78–82

2. Bik, A., Girkar, M., Grey, P., Tian, X.: Efficient exploitation of parallelism on
Pentium III and Pentium 4 processor-based systems. Intel Technology Journal 5
(2001)

3. Johnson, S.P., Evans, E., Jin, H., Ierotheou, C.S.: The ParaWise Expert Assistant
— widening accessibility to efficient and scalable tool generated OpenMP code. In:
WOMPAT. (2004) 67–82

4. Quinlan, D.J., et al.: ROSE compiler project. http://www.rosecompiler.org/
5. Edison Design Group: C++ Front End. http://www.edg.com
6. Rasmussen, C., et al.: Open Fortran Parser. http://fortran-parser.

sourceforge.net/

7. Bodin, F., et al.: Sage++: An object-oriented toolkit and class library for build-
ing Fortran and C++ restructuring tools. In: Proceedings of the Second Annual
Object-Oriented Numerics Conference. (1994)

8. Quinlan, D.J., et al.: Compass user manual. http://www.rosecompiler.org/

compass.pdf (2008)
9. The Motor Industry Software Reliability Association: MISRA C++: 2008 Guide-

lines for the use of the C++ language in critical systems. (2008)
10. Cooper, K., Torczon, L.: Engineering a Compiler. Morgan Kaufmann (2003)
11. Yi, Q., Quinlan, D.: Applying loop optimizations to object-oriented abstractions

through general classification of array semantics. In: The 17th International Work-
shop on Languages and Compilers for Parallel Computing (LCPC). (2004)

12. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann (2001)

13. Robicheaux, J., Shah, S. http://www.openmp.org/samples/jacobi.f (1998)
14. Sato, M., Satoh, S., Kusano, K., Tanaka, Y.: Design of OpenMP compiler for an

SMP cluster. In: the 1st European Workshop on OpenMP (EWOMP’99). (Septem-
ber 1999) 32–39

15. Benkner, S.: VFC: The Vienna Fortran Compiler. Scientific Programming 7(1)
(1999) 67–81

16. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.A.M.,
Tjiang, S.W., Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.:
SUIF: An infrastructure for research on parallelizing and optimizing compilers.
SIGPLAN Notices 29(12) (1994) 31–37

17. Johnson, E., Gannon, D., Beckman, P.: HPC++: Experiments with the Parallel
Standard Template Library. In: Proceedings of the 11th International Conference
on Supercomputing (ICS-97), New York, ACM Press (July 1997) 124–131

18. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato,
N.M., Rauchwerger, L.: STAPL: An adaptive, generic parallel C++ library. In:
Languages and Compilers for Parallel Computing (LCPC). (2001) 193–208

19. Singler, J., Konsik, B.: The GNU libstdc++ parallel mode: software engineering
considerations. In: IWMSE ’08: Proceedings of the 1st international workshop on
Multicore software engineering, New York, NY, USA, ACM (2008) 15–22

20. Kambadur, P., Gregor, D., Lumsdaine, A.: OpenMP extensions for generic li-
braries. In: International Workshop on OpenMP (IWOMP). (2008)

21. Gregor, D., Schupp, S.: STLlint: lifting static checking from languages to libraries.
Softw. Pract. Exper. 36(3) (2006) 225–254

22. Quinlan, D.J., Schordan, M., Yi, Q., de Supinski, B.R.: Semantic-driven paralleliza-
tion of loops operating on user-defined containers. In: Workshop on Languages and
Compilers for Parallel Computing. Volume 2958. (2003) 524–538

23. Quinlan, D., Schordan, M., Yi, Q., de Supinski, B.: A C++ infrastructure for
automatic introduction and translation of OpenMP directives. In: Proceedings of
the Worshop on OpenMP Applications and Tools (WOMPAT). Volume 2716 of
LNCS., Springer-Verlag (June 2003) 13–25

